Capillary Malformation: Expression of Angiogenic and Vasculogenic Factors

Rafael A. Couto BA, Javier A. Couto BS, Reid A. Maclellan MD, Joyce Bischoff PhD, Steven J. Fishman MD, John B. Mulliken MD, Arin K. Greene MD, MMSc

Background: Capillary malformations are associated with soft-tissue hypertrophy. The purpose of this study was to determine if angiogenesis or vasculogenesis is upregulated in this overgrowth condition.

Methods: Capillary malformation specimens were collected prospectively from nine patients after resection: lip (n=6), lower extremity (n=3). The average age of the cohort was 25.9 years (range 10-49 years). Neovascularization was compared to normal control tissue. Specimens were analyzed by immunohistochemistry for CD31 (microvascular density), CD31/H3 (proliferating endothelial cells), and CD34/CD133 (endothelial progenitor cells). Quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to determine mRNA expression of progenitor cells (CD133) and factors that recruit them: vascular endothelial growth factor (VEGF-A), hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), and stromal cell–derived factor-1α (SDF-1α). Angiopoetin-1,-2 (ANG-1,-2) and VEGF receptors (VEGFR1,2 and neuropilin1,2) also were quantified using qRT-PCR.

Results: Microvascular density (6.2%) was greater in capillary malformations compared to normal specimens (2.8%) (p = 0.03). Endothelial proliferation was noted in capillary malformations (5.1/field), but not in normal tissue (p = 0.01). Endothelial progenitor cells were absent in both study and control tissues. ANG-2 (2.7-fold), neuropilin 1 (2.0-fold), and neuropilin 2 (3.3-fold) were increased in capillary malformations (p = 0.005), whereas VEGF-A (0.5-fold), VEGFR1 (0.8-fold), VEGFR2 (1.7-fold), ANG-1 (1.1-fold), HIF-1α (0.7-fold), MMP-9 (1.8-fold), SDF-1α (1.6-fold), and CD133 (0.4-fold) were not elevated (p = 0.6).

Conclusions: Capillary malformations exhibit elevated vasculature and proliferating endothelial cells; progenitor cells are not present. Neovascularization by angiogenesis may be involved in the evolution of capillary malformations. Further investigation may enable the prevention of soft-tissue overgrowth using pharmacotherapy.