Abstract

Background: Cervical recurrences of previously-irradiated head and neck cancer (H&NC) represent a formidable therapeutic and reconstructive challenge. Brachytherapy (BT) following radical resection increases local control of cervical recurrences of previously-irradiated head and neck cancer (H&NC). However, without bringing vascularized tissue to the operative bed, aggressive local treatment of tissues compromised by previous radiation predisposes patients to significant wound-healing complications. We sought to review our experience with high-dose rate (HDR) BT and pectoralis flap reconstruction for salvage of recurrent H&NC cervical lymphadenopathy.

Methods: A retrospective review was performed of all patients who underwent HDR BT for recurrent H&NC at a single institution from 2007 to 2009.

Results: Five patients with 6 flaps were included (1 with metachronous bilateral disease). There were 4 primary and 2 secondary recurrences. All patients previously underwent primary cisplatin-based chemotherapy and external beam radiation therapy (RT). Two patients had previous neck dissections. In this series, the surgical approach consisted of radical (n=5) or extended radical (n=1) neck dissection, placement of after-loading HDR catheters (mean=3/site) (Figure 1), and pedicled pectoralis major flap coverage (Figure 2). RT (iridium-192) was initiated within 48h of surgery. Median BT dose was 2000 cGy delivered BID in 200 cGy fractions. All flaps were fully viable at 3months. One patient developed a 1cm superficial dehiscence that resolved with local wound care. One patient who underwent floor-of-mouth resection with concomitant radical neck dissection developed an orocutaneous fistula, which healed following primary repair.

Figure 1: Afterloading brachytherapy catheters in place
Figure 2: Pedicled pectoralis major muscle flap resurfacing the tumor bed with the afterloading catheters traversing the base of the flap

Conclusion: Pectoralis flap reconstruction of oncologic defects in previously-irradiated fields provides reliable coverage of HDR BT catheters and also allows for immediate therapy (within 48h of surgery) without adversely affecting wound healing or flap survival. These data may serve to guide future treatment of complicated H&NC recurrences.

References:

Disclosure/Financial Support

A portion of this research was funded by a Ruth L. Kirschstein National Research Service Award (Kirschstein-NRSA) Institutional Research Training Grant (T32 HL083824 05 to Dr. Alyssa J. Reiffel).

None of the authors have any commercial associations or financial disclosures that might pose or create a conflict of interest with information presented in this manuscript.